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Abstract We study neural network models in which the initial interaction matrix 
elementh are drawn from an arbitraly probability distribution and in which pattems 
are subsequently stored by eliminating the hstrated bonds, generalizing a proposal by 
Kinzel. We show that the optimal choice for the a priori distribution mrresponds to 
choosing uniform ferromagnetic initial interactions. For the optimal model we study 
analytically the dynamical behaviour, the equilibrium properties, the sizes of the domains 
of attraction and a number of information-theoretical performance measures. 

1. Introduction 

The fundamental principle of storing information in recurrent neural networks is the 
creation of attractors through the modification of synaptic interactions between the 
neurons. It was shown by Little [I], Hopfield [2] and Amit et a2 [3] that models of 
such systems can be studied with statistical-mechanical tools, if one is willing to pay 
the price of reducing the number of degrees of freedom of individual neurons to a 
minimum. If the interaction matrix is chosen to be symmetric, then information can 
be stored in the form of fixed-point attractors; furthermore, equilibrium statistical 
mechanics will apply. If the interaction matrix is non-symmetric, there will be also 
the opportunity to have limitcycle attractors or even more exotic types; equilibrium 
statistical mechanics, however, will no longer apply. For an overview of the wealth of 
literature on attractor neural networks we would like to refer to textbooks like [4-61 
or the review paper by Abbott [7]. 

In this paper we study the class of Ising spin attractor neural network models 
that one obtains by generalizing a proposal by Kinzel 181: the initial interactions will 

- be drawn independently according to some probability distribution and subsequently 
patterns are stored by eliminating the frustrated bonds. Selecting individual members 
of the class corresponds to making a specific choice for the a priori distribution; the 
original Kinzel model [8] is the result of choosing a zero-mean Gaussian (information 
storage is equivalent to removal of frustrated bonds in a long-range spin glass). 

We will show that Kinzel’s original choice is not optimal with respect to the 
maximization of Gardner’s stability parameters: the optimal a priori distribution we 
find establishes that, rather than a long-range spin glass, the tabula rasa starting point 
should be a uniform long-range ferromagnet. AU models of the generalized Kinzel 
type have (by construction) two desirable properties: (a) the stability parameters can 
never be negative, whatever the statistical properties of the stored patterns, and (b) ’ 
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the interaction matrices can be constructed by a simple learning rule. The optimal 
model has the additional advantage of having binary interactions J, . E {0,1) only. 

After the storage process (the elimination of frustrated bonds) the optimal model 
will be a collection of disconnected ferromagnetic sublattices, therefore we will be 
able to analyse the system in great detail, both with respect to equilibrium properties 
(free energy, sizes of domains of attraction) and dynamical behaviour. In addition 
we will study (in the thermodynamic limit) information-theoretical properties such as 
the error in the equilibrium state as a function of the error in the initial state and 
the information gain relative to the maximum information that can be stored in the 
connection matrix. 

H J J Jonker and A C C Coolen 

2. Generalized Kinzel models 

In this section we will generalize a proposal by Kinzel 181 and define dynamics and 
structure of a class of attractor neural network models in which learning is based on 
the elimination of frustrated bonds. The network will consist of N binary neurons (or 
Ising spins) si E {-1,l) which are interconnected via synaptic interactions J i j .  ,The 
microscopic system state will be denoted by the vector s E {-1, l}N. The system's 
dynamics is a stochastic local field alignment, the evolution in time of the microscopic 
state probability p , ( s )  is governed by the master equation 

where F j  denotes the j th  spin flip operator, i.e. Fj@(s) 3 @(sl,. . . , - s j , .  . . , SN)r 
and the transition rates w j  are defined as usual: 

W j ( S )  z $ [l- tanh(0Sjhj ) ]  . 
The local alignment fields hi (or post-synaptic potentials) are given by 

hi z J ; j s j .  
iiri 

The inverse temperature p 2'-' is a measure of the amount of noise in the system. 
If the interaction matrix J is symmetric (as will be the case for the models considered 
in this paper), then the dynamics (1) obeys detailed balance and the (unique) 
equilibrium probability distribution for the process (1) is the Gibbs distribution 

In this case equilibrium statistical mechanics applies. At zero temperature the only 
randomness in the process (1) is in the order of spin updates and consequently the 
Hamiltonian (2) is a Liapunov function, since for any monotonic function f (with 
f '  > 0) of the Hamiltonian the ensemble average according to (1) will decrease as a 
function of time: 

. d 
- ( f ( H ) )  = dt 0 

dz ( L ,  [ f ( H  - Z z )  - f ( H ) ] )  6 0 L z ( s )  =E6 [z  + s j h j ]  . 
j 
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In defining the interaction matrix elements { Jii}  we will generalize a proposal by 
Kinzel [8] for the storage of a given number p of binary N-bit vectors (or patterns) 
E’ E {-l,l}N ( p  = 1,. . . , p ) .  We define the class of generalized Kinzel models to 
consist of those Ising spin neural network models for which the interaction matrix is 
generated by the following procedure. 

Take initially all matrix elements J i j  equal to Kii which are drawn at random 
according to a probability distribution P ( K ) ;  
remove all bonds that d . b e  frustrated if the system is in any of the patterns: 
J i j  + 0 if 3, such that .$e! Jij  < 0. 
Individual members of the class are obtained by making a specific choice for the 

distribution P ( K )  (the original Kinzel model [8] corresponds to choosing P ( K )  to 
be a zero-mean Gaussian dismiution). The interactions Jij  can now be written as 

J i j  = Kij6c i , sp(~i , )€ j  

where ti 3 ( E t , .  . . , E : ) .  By construction the patterns will at least be metastable 
fixed points (whatever the values of p and N )  for all such models at zero temperature. 
This is emphasized by Gardner’s stability parameters yip [9]: 

3. The optimal aprhri weight distribution 

Our next step consists of proving that, with respect to stabilization of the patterns 
p, the optimal a priori distribution P( IC) implies binary initial interactions. Upon 
introduction of the (non-negative) variables wij  and the average (.)i, defined as 

we can formally write (4) in the form 

from which we can deduce: 
y?’ 6 Ckfi ‘<, ,sgn(K,~)E~ for i 6 N , p  < p .  
The maximum values for the stability parameters are obtained only if lKii I = 
lICik] for all {j, k} that contniute to the above averages. 
Since the variables {ICji} are drawn upriori, the maximum stabilities are obtained 

only if the U priori probability distniution P ( K )  itself obeys (IC’) = (lK1)2. 
Apparantly, the optimal choice Po,,( K )  is of the form (I<* > 0): 

P o p ~ ( r C ) = p 6 [ K - I C * ] + ( 1 - p ) 6 [ h ’ + I C * ]  O < p <  1 .  (5) 
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In this case the stability parameters are given by 

H J J Jononker and A C C Coolen 

The stability parameters no longer have a pattern index dependence. Equation (5) 
states that the optimal choice for the a priori distribution of interactions implies 
starting with binary weights (the value of K’ will only set the temperature scale). 

Elimination of the remaining freedom in choosing the parameter p requires a 
more detailed specification of the required properties of the distribution of the 
stability parameters 7;.  We will show that there are at least three sensible measures 
that are optimized by the choice p = 1: 

where double brackets indicate averaging over both the a priori distribution P( IC) of 
the independent variables {ICij} and the distribution pE of the independent vectors 
It}. The physical meaning of and QI1 is clear. The quantity -aIII represents the 
expectation value of the fraction of metastable sites (i.e. sites with a zero stability 
parameter). Of course, presenting these specific measures does not eliminate the 
possible existence of alternative quantities which are optimal for some p < 1. If we 
perform the averages in the above measures and take P (  IC) = Pop,( IC) we find 

W P )  = ( N  - 1) [4P(P< - P-E)2  + P<P-El 
E 

@II(P) = @I(P) + ( N  - 1)(N - 2)CPE [ P 1 E  + P?PE - P-E)21 

PE [I - PPE - (1 - P)P-EI N-l . 
E 

@III(P) = - 
E 

If the pattern distribution obeys pE = p-< for all 
quantities do not depend on p .  In all other cases @ I  and 
the choice p = 1. To find the maximum of QUI we first define 

E {-1,1}p, then the above 
are maximized only by 

p=!U+c) Pc * - I  = Z [ P e * P - E l .  

In terms of these new variables we can write @,,, as 

N - 1  N-1-n 

n<N-1 ,  even E 

N - 1  

n<N-1, odd 
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from which we may conclude that in order to maximize aII1 we must choose p 2 $. 
The exact location of the maximum is not clear in general, but depends both on the 
choice of N and the pattern distribution. If the distribution of the patterns is such 
that the moments zg E PEN are constant in the thermodynamic limit, then for large 
N the leading contnbution to QIII is 

where z: [zE f x - ( ] / 2 .  Differentiation with respect to E yields 

Using tanh(+) < x (x 2 0) we may conclude that @ ( E )  is a monotonically increasing 
fnnction of E provided that 'de : z: 6 1 and not all z; = 0. Therefore the optimal 
choice in the scaling regime p;'N 6 1 ( N  + CO) is choosing p = 1. 

4. Statistical mechanics of the optimal model 

We will now study in more detail the optimal model (5) with p = 1, for which the 
interaction matrix is (K' > 0) 

4, = K'%,E, (6) 

(note that the above choice (6) for the interaction matrix has in fact also been 
proposed and briefly discussed in an early paper by van Hemmen and van Enter 
[lo]). Since the matrix (6) is of the form studied in [U], we will make use of the so- 
called sublattice formalism and introduce a partition of the system into 2p sublattices 
I,,: 

{1, ..., N } s  U I,, I , , s { i l E , = . ~ } .  
,,€{-1JP 

The number of sites in sublattice I,, will be denoted by II,,I. The sublattice 
magnetizations m,, and the usual order parameters qp (the soalled overlaps) are 
given by 

Apart from an irrelevant constant (due to the absence of self-interactions J i i )  the 
Hamiltonian (2) of the model (6) can now be Written as 
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which shows that the sublattices I ,  have become independent infinite-range 
ferromagnets with uniform coupling strength K". The stability parameters yi of 
the model (6)  therefore depend only on the sizes of the sublattices 

H J J J o n k  and A C C Coolen 

i ~ r , :  y j = { l r , l - i } ~ .  

The ground-state energy is obtained if all sublattices are ferromagnetically ordered 
E,, = $ K * C ,  11,12. 

We will now restrict ourselves to the case where p is tixed and the system size 
N diverges. In order for the Hamiltonian to be extensive the coupling strength K* 
must now scale as N-I ,  since /I,J = p,N + U ( m ) .  We will choose 

In the thermodynamic limit N + CO the free energy per spin f[P] (which is simply 
the weighted sum of the 2 p  individual sublattice free energies) becomes 

in which the order parameters {m,} are the critical points that minimize (8): 

If p is fixed one can (in the thermodynamic limit) also analyse the dynamical 
behaviour of the model. Using methods as in 1121 or [13], one arrives for N + 00 at 
the following deterministic flow equation for the sublattice magnetizations 

(9) 
d -m ( t )  = -m,(t) + tanh dt , 

which leads to the equilibrium solutions 

where M [ K ]  represents the non-negative solution of the transcendental equation 
tanh(KM) = M and where q E (ql,. . . , q p ) .  Every sublattice 1, has a critical 
temperature T; = 11,17-' above which m,(00) = 0. 

For the special case T = 0 the f i t e -p  flow equations (9) can be solved directly: 

m,(t) = e-'m,(O) + (1 - e-t)sgn[m,(0)] 

If p is not finite in the th~rmodyMmiC limit but scales with the system size N ,  the 
outcome of the T = 0 dynamics can still be predicted, using the fact that for T = 0 
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the Hamiltonian (7) is monotonically decreasing to a (local) minimum (see (3)). H 
is at a (local) minimum if 

h, II,I > 1 : m,(m) = sgn [m,(0)1 . (10) 
The behaviour of the network at T = 0 is quite transparent: from (10) we can 
conclude that, if the system is prepared in an initial state which is a distorted 
version of one of the stored patterns, it will reconstruct this pattern completely if 
the magnetization of each sublattice has the same sign in the initial state as in the 
pattern to be reconstructed and if there are no sublattices which contain only one 
spin. 

Since the outcome of the zero-temperature dynamics can be expressed in terms 
of the initial state, we can also study the sizes of the domains of attraction of the 
stored patterns. There are 2p sublattices, so if all probabilities p, are non-zero 
there will be (for finite p )  22p different stable equilibrium states (at the level of 
sublattice magnetizations). Only 2p of these states correspond to stored patterns or 
their inverses, therefore 22p - 2p final states are spurious. 

There are several ways of measuring the size of the attraction domains. As in 
[14] one could define the size of the domains of attraction for stored pattems as the 
fraction fp of all microstates which will evolve towards one of the stored patterns 
(or its inverse). If we restrict ourselves to the case where the patterns are drawn at 
random from an unbiased distribution, then p ,  2-p and the sublattices will in the 
thermodynamic limit all be roughly of size N2-P. For the present model we find 
for fp 

fp = p2'-2' . 
Another measure, due to Cottrell [U], is the Hamming radius of the greatest sphere 
that can be included in the attraction domain. Calculating this quantity amounts to 
determining, when starting from a stored pattern, how many spins can be flipped 
in the worst case, such that the subsequent evolution will still be towards the 
original stored pattern. Since for the present model a pattern will not be correctly 
reconstructed if the sign of the magnetization of one or more sublattices has been 
altered, one deals with the wont situation if the flipped spins uZZ belong to the smaZZe$t 
sublattice. In this way one arrives at a Hamming radius of 

where int[. . .] is defined as the integer part. Note that (11) is equal to 2min, 7:. If 
the patterns are drawn at random from an unbiased distribution and if p is finite one 
finds an expectation value for the Hamming radius of about int[N2-J'-']. 

5. Error correction 

In this section we will consider the p = 1 network in the absence of noise (T = 0), 
for large N but arbitrary p .  We will study the performance of the network upon 
choosing an initial state s(0) which is a randomly distorted version of one of the 
stored patterns, i.e. 

Rob[si(O)I = (1- ~ P , , ( o ) , < t  -t T~, , (o) , -E;  (12) 
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for some p. The quantity r is the fractional error in the initid state. It is our 
objective to calculate the expectation value e(.) of the fraction of incorrect spins in 
the f i a l  state as a function of T ,  p ,  N and the the pattern probability distribution. 

Full reconstruction of pattern ,$p implies in terms of the overlap order parameters: 
q,(w) = N-’C,  Il?l~~q~. From the solution of the T = 0 dynamics as obtained 
in the previous semon (see (10 ) )  follows the correspondiig requirement on the 
initial state: sgn[m,,(O)] = qp for all q. The network will rmnstruct pattern 
without error if and only if the distortion process has not changed the sign of the 
magnetization of any sublattice. If, on the other hand, the sign of the magnetization of 
a sublattice I,, has changed, then all spins in I,, will be misaligned. Consequently, the 
total number of incorrect spins in equilibrium equals the number of spins contained in 
those sublattices for which the magnetization has changed sign due to the mistortion. 
Let E? denote the expectation value of the final number of misaligned spins in 
sublathce I,,, then the expectation value e( T )  of the fractional error of the system is 

H J J Jonker and A C C Coolen 

where PJQ) is the probability for sublattice I,, to contain Q spins and where 
Pe(Q, T )  is the probability of a magnetization sign change in a sublattice of size Q, 
due to the distortion (12). 

Let us concentrate on P,( Q, T )  first. The probability of R spins changing their 
state as a result of the process (12) in a lattice of size Q is given by 

(;) T R ( 1 -  T ) Q - R .  

Since a magnetization sign change occurs if R > i Q ,  the probability for this to 
happen is 

where int[r] is the largest integer less than or equal to z and where AQ G 

(1 + (-1)Q)p indicates whether Q is even or odd. In the case where R = $Q 
(Q  even), the sublattice magnetization is expected to have a 50% probability of sign 
change. An exact expression for P,,(Q) is harder to find, since.the global constraint 
E,, II,I = N is to be satisfied. However, for large N one can take for P,,(Q) a 
binomial distribution (as if the sublattice sizes were independent quantities) 

in which p ,  denotes the probability that a randomly chosen spin belongs to sublattice 
I,, (p,, = 2-p for random unbiased patterns). By choosing P,,(Q) according to (16) 
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the average value of E, 11,1 equals N whereas the deviations are of order f l  (the 
bard constraint bas been replaced by a soft one). This procedure is thermodynamically 
equivalent to replacing a canonical ensemble by a grand canonical ensemble. In 
order to perform the summation in the right-hand side of (14) we introduce some 
approximations for P,,(Q) and Pe(Q,r) .  We will distinguish two cases: the case 
where the first moment Np,,  of P,, is large (the specific magnitude will be specified 
later), and the case where N p ,  is small. 

If the first moment Np,, is large, then P,,(Q) can be well approximated by the 
normal distribution 

where G, Np,,  and U,, ,/-. A sensible approximation for Pe(Q,  T )  

is somewhat more difficult to obtain. We will express P,(Q, r )  in incomplete Beta- 
functions, for which good asymptotic approximations exist (see the appendix for 
details). If P is not too small (T > 0.028) but smaller than then E, can be 
approximated by 

2 
9 [ ( l - r ) L r q  

W(T) = - 
4 ( l - r ) f + r f  . 

I where 

If, on the other hand, the first moment G,, z N p ,  is small, we will use a Poisson 
distribution to approximate P,( Q): 

-Q 
PJQ)  = e-QwI - Qs 

Q. 
Because P,(Q) vanishes rapidly for Q large with respect to G,, E,(T) can be 
approximated by the truncated series 

where the coefficients ck t are functions of r; namely c , ( T )  = r, c2(r )  = r, 
c 3 ( r )  = -r3 + 3.". etc. 

In figure 1, the Poisson approximation of E,, has been plotted as a function of 
Q,, for different values of r .  The shape of this function E, illustrates clearly the 
pattern reconstruction in the ferromagnetic sublattices. If a sublattice contains only 
a few spins, there' is a high probabilily of its magnetization changing sign due to the 
distortion. However, the impact of this sublattice on the total performance of the 
network is small. On the other hand, if a sublattice contains a large number of spins, 
its impact on the total performance is large, but the probability of a magneriza tion 

- 
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0 5 10 

6, 

Figure 1. The expectation value of the number 
of incorrect spins as a fundion of the average 
occupation number Q, for different values of the 
distortion parameter 7. 

sign change is small. In both extreme cases (extremely small and extremely large 
sublattice size) E,(v) is small; somewhere in between one can distinguish a worst 
case. 

Finally we will now make a choice for the pattern distribution and calculate the 
expectation value of the fractional error in the reconstructed state explicitly, using the 
approximations (17) and (18), and compare these predictions with simulation results. 
We a-e that the patterns are randomly drawn from the distribution 

which will produce patterns with bias EmNdm &xi El = a and average mutual 

drawn spin to belong to sublattice I, can now be written as 
overlap 1 xi si P Y -  ti - az (p # v). The probability p ,  for a randomly 

l + a  1 - a  p-n 

p ,  = (1) 
where n denotes the number of +l-components of the vector q. Since p,  depends 
on the argument q through the value of n only, the same is hue for zn and G,: 
E, = En and G, = gn. The relative error e(.) can now be calculated by summing 
over p + 1 terms: 

- 

In figure 2 the fractional error e (full curve) has been plotted as a function of the 
pattern bias a for different numbers p of patterns for a network of 4000 spins. The 
distortion parameter (fractional error in the initial state) was chosen to be r = 0.2. 
- For the f i t  moment Gn < 12, we used the truncated series (18) for computing 
 en(^). For Gn > 12 we used (17). These analytical results are in good agreement 
with the results obtained by performing the actual simulation of the dynamics at 
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0 0 5  1 0  0 0 5  1 0  
0 a 

0 0 5  1 .O 
a a 

. 
Figure 2. Fractional error e in the final state as a function of the pattern bias a for 
different values of p; r = 0.2, N 5 4000. Full awes:  theoretical predictions; circles: 
results of 1000 simulations (errors are smaller than marker size) ((I) p = 5, (b) p = 8, 
(c) p = 13, (d)  p = 20. 

the spin level (markers). The discontinuities in the full curves are the result of 
switching from one approximation to the other. In general the Poisson approximation 
yields better results than the normal approximation (the latter produces a systematic 
overestimation). 

6. Information storage capacity and eKiciency 

In models of diluted neural networks [16,17] it is customary to define the storage 
capacity & as the ratio of the maximal number of patterns to the average connectivity. 
If the patterns are drawn at random from an unbiased distribution, then in the model 
of section 4 a neuron is on average connected to a fraction f 
2-* of the system. In order to ensure non-vanishing basins of attraction, N must 
be proportional to 2 g  (see (11)): N =-Q2p @ is the average number of neurom 
in a sublattice). For large N, the storage capacity & for the model (6)  can now be 

N-*(Cij J i j / I<")E  
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written as 

H J J J o n h  and A C C Coolen 

Note the correspondence between this result and a result derived in [U], where, 
using Gardner calculations, the question was addressed of how to maximize the 
storage capacity of a network with Wig bonds under the conspaint that each neuron 
be coupled to just a fraction f of the system. In the limit f ---* 0, the storage capacity 
& turned out also to diverge as - *log f. 

The fact that the storage capacity is not bounded can be understood by realizing 
that both in the model of [IS] and the model of section 4 dilution does not take place 
in a random way. If connections are eliminated in a non-random way, one actually 
adds information to the system. In order to arrive at a bounded quantity we will 
follow an information-theoretic approach. 

It has been argued before that not the storage capacity but rather the infomution 
storage capacity is the relevant quantity of a neural network. For instance, networks 
storing extremely biased (or sparsely coded) information can store many more 
patterns than networks storing unbiased (densely coded) information (see e.g. [19- 
211). However, the information content of sparsely coded patterns is much less 
than that of densely coded patterns. Studying the information storage capacity 
enables one to objectively compare different systems. The additional advantage of 
having discrete connections is that one can now also calculate the maximal amount 
of information to be contained in a connection matrix (which provides an upper 
bound for the information storage capacity). This appeared to be very useful in [21], 
where, from the outcome of a replica+ymmetric calculation exceeding this bound, 
one could immediately conclude that replica symmetry had to be broken. By studying 
the information storage capacity relative to the information that can be maximally 
contained in the connection matrix (the storage ratio) one obtains a measure of the 
efficiency of the network. However, even this approach does not always give g o d  
results. Consider, for instance, the choice J , .  = Sij with local fields defined as 
hi = cj Jiisj.  Since now every state is stabfe, application of the aforementioned 
method yields a ratio which is obviously much higher than 1. The problem is the lack 
of a good criterion for the meaning of storuge. In the previous example the network 
cannot perform error correction, therefore it seems inappropriate to speak of storage. 

A nice general method to cope with such problems is given in 1221. The key idea is 
not to study the information storage capacity of a network, but rather the network’s 
ability to gain information. After all, the task of an attractor neural network is 
to reconstruct a stored pattern on the basis of a distorted version. Since the initial 
network state (the distorted version) already contains a certain amount of information, 
the information a network actually gains is the information present in the fiial state 
minus the information present in the initial state. In order to also take into amunt  
the efficiency of the network; we will study the average relufive information gain: the 
average information gain divided by the information maximally to be contained in the 
connection matrix 

(19) 
((Inf(final state) - Inf(initia1 state))) 

Inf(connection matrix) 
i s p  

In this equation Inf(...) denotes the function that determines the information 
associated with its argument, and ((...)) denotes averages over distortions and 
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patterns. If one deals with unbiased patterns, the information of the initial state 
is given by N ( 1 -  ((S[ei(r)]))), where ei(T) is the fraction of incorrect spins in the 
initial state, T is the distortion probability as defined in section 5 and 

S(f) 3 -[flnf+ (1- f ) W - f ) l / h 2  

For large N one can apply the central limit theorem and replace ((S[%(T)])) by S(r) .  
'Ihking into account the fractional error et(?) in the final state as well, expression 
(19) reduces to 

The quantity i can be calculated for any network with discrete bonds that stores 
unbiased patterns (for biased patterns one has to take into account the reduced 
information content of the patterns, see e.g. [4,23]). It takes into acount both the 
information storage capacity and the size of the attraction domains. The trivial 
model Jij = Sij does not provide attraction domains and is therefore not able to 
gain information, i = 0. Storing patterns in a network will in general initially increase 
i, as p becomes larger; however, the domains of attraction will shrink. This, in turn, 
has a reducing effect on i since the probability of the initial state being outside the 
appropriate attraction domain increases. Somewhere in between one may expect a 
maximum. 

In order to calculate i for the network of section 4, we must find the expectation 
value ((S(ef(r)))) of the information contained in the initial state. Since ef(r) is a 
sum over 2P equally distributed contributions E,,(r), we can apply the central limit 
theorem again and replace ((S[ef(r)])) by S[e ( r ) ] ,  where e(.) is defied by (13). 
For not too small values of p we can approximate i by 

- where E(T) can be calculated from (17) or (18), depending on the value of 
Q N2-P. In figure 3(u), we have plotted the relative information gain i, calculated 
according to (21), as a function of Q for p = 12 and different values of T .  The 
markers represent the results of simulations in which i has been determined according 
to (20). For every T there appears to be a maximum value for i. The absolute 
maximum can be found at = 2.863 . . ., T = 0.137. . .; in the limit of p + CO the 
corresponding maximal relative information gain i is 0.178. . . . 

In order to have some kind of reference, we will finally calculate the same quantity 
for the clipped Hopfield model [16,24]. Since this network is fully connected, the 
expression for i now becomes 

i = 2a{S(r) - ((s[ef(.)l))} 

where a p / N .  Unfortunately it is a very hard problem to determine ((S[ef(r)]))  
analytically for the clipped Hopfield model, which is why we have resorted to 
numerical simulations. The results for N = 800 are depicted in figure 3(b) for 
different values of r. The maximum value i M 0.13 is attained at roughly a = 0.96. . . 
for r = 0.225.. . . 
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Figure 3. (a) Relative information gain i for the model (6) as a function of the average 
sublattice size g~ N2-P for different values of the distortion parameter r (12 unbiased 
random patterns). Full curves: theoretical predictions according to (7.1). Markers: results 
of 1000 simulations (erron are smaller than maxker sizejsquares, r = 0.05; triangles, 
r = 0.15; circles, r = 0.25. (b) Relative information gain i for the clipped Hopfield 
model as a function of U p / N  for different values of r; N = 800. Each marker 
represenk an average over 480 simulations: squares, r = 0.15; triangles. r = 0.23: 
circles. r = 0.35. 

7. Discussion 

In this paper we have studied the class of Ising spin attractor neural network models 
one obtains by generalizing a proposal by Kinzel[8]: the initial interactions are drawn 
independently according to some probability distribution and subsequently patterns 
are stored by e l i i a t ing  the frustrated bonds. Selecting individual members of 
the class corresponds to making a specific choice for the a prfori distribution; the 
original Kinzel model [SI is the result of choosing a zero-mean Gaussian. This choice 
is found not to be optimal with respect to the m e a t i o n  of Gardner's stability 
parameters: the optimal a priori distribution implies uniform ferromagnetic initial 
interactions (the strength of which will only set the temperature scale). AU models 
of the generalized Kinzel type have (by construction) two desirable properties: (a) 
the stability parameters can never be negative, whatever the statistical properties of 
the stored patterns, and @) the interaction matrices can be constructed by a simple 
learning rule. The optimal model has the additional advantage of having binary 
interactions Ji, E (0,l) only. 

After the storage process (the elimination of frustrated bonds) the optimal model 
has become a collection of disconnected ferromagnetic sublattices, therefore it can be 
analysed in great detail, both with respect to equilibrium properties (free energy, sizes 
of domains of attraction) and dynamical behaviour. In addition one can calculate (in 
the thermodynamic limit) information-theoretical quantities such as the error in the 
equilibrium state as a function of the error in the initial state (for arbitrary p )  and 
the information gain relative to the maximum information that can be stored in the 
connection matrix. 

It is somewhat surprising that a model of such simplicity functions as an associative 
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memory, whatever the choice of patterns. Since only one bit per interaction is needed 
and since the interaction matrix of the optimal model will in general be very sparse, 
it is probably easy to implement the network in hardware. However, one should not 
overastimate the practical value of the model. Although for unbiased random patterns 
the storage can in principle be efficient (with a larger relative information gain than, 
for instance, the clipped Hopfield model [16,24]), the number of neurons should then 
be proportional to 2* (which quickly exceeds attainable values). Therefore we believe 
that the optimal model should be appreciated merely in an academic sense, being 
in a way complementary to the Willshaw model [19]. Both models employ binary 
interactions Jij E {0,1}; the present model can store efficiently a s m d  number 
of patterns with a high information content, whereas the WiUshaw model can store 
efficiently a high number of patterns with a low information content. The present 
model clearly indicates the potential and the restrictions of learning by elimination of 
frustrated bonds, and because of its tranparency it might serve as a benchmark and 
as a convenient toy model for testing and illustrating analytical methods. 

Appendix. Average alignment in large sublattices 

In evaluating P,(Q, T )  (U) we have to distinguish the cases of Q even and Q odd: 

We use the identity [U] 

5 ( pR( 1 - = I,( A, B - A + 1) 
RIA 

where &(a, b)  denotes the incomplete beta-function ratio 
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where 
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2 
9 [(l- 7-)i - ,t] 

v ( r )  = - 
4 ( l - r ) 5 + T +  

and the asymptotic expression f i z  exp (z2) erfc(z) = 1 + 0(r2) to derive 

In order to find an expression for Eq we substitute for P, and P,( Q, r )  the normal 
distribution and the result (Al), respectively, and replace the sum in (14) by an 
integral: 

In deriving this final result, we have assumed that the integral is dominated by 
the large-Q contributions. A self-consistency check, which can be performed by 
determining the point where the integrand of (AZ) actually attains its maximum 
value, yields the condition v ( ~ )  < 1. This means that (AZ) is only valid if T is larger 
than approximately 0.028. 

Finally one can rewrite (AZ) such that the integral depends on one parameter 
only. 

where 

The integral can be evaluated numerically, but an upper bound for (A3) can be 
obtained by replacing the square root in the integral by the tangent h( t )  = ( t  + 
t * ) / 2 f i  that touches at the point t =  t*, for any t* > 0 (since V t 2 0 : h ( t )  2 4): 

g(z )  G +[I + ~ ; i ( z .  + t*)(l + eaz~)e" ' l .  ('44) 4 6  
Minimizing the upper bound (A4) with respect to t' yields the best value for t":  

t* = z. + [&(I + er~z.])e~*]-' .  

Apparently for large Q a good approximation for (AZ) is (the relative error with 
respect to (AZ) being smaller than 4.5 x loL4 for Q > 12) 
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